MPEP reduces seizure severity in Fmr-1 KO mice over expressing human Aβ
نویسندگان
چکیده
Metabotropic glutamate receptor 5 (mGluR5) regulates the translation of amyloid precursor protein (APP) mRNA. Under resting conditions, mRNA is bound to and translationally repressed by the fragile X mental retardation protein (FMRP). Upon group 1 mGluR activation, FMRP dissociates from the mRNA and translation ensues. APP levels are elevated in the dendrites of primary neuronal cultures as well as in synaptoneurosomes (SN) prepared from embryonic and juvenile fmr-1 knockout (KO) mice, respectively. In order to study the effects of APP and its proteolytic product Aβ on Fragile X syndrome (FXS) phenotypes, we created a novel mouse model (FRAXAD) that over-expresses human APPSwe/Aβ in an fmr-1 KO background. Herein, we assess (1) human APPSwe and Aβ levels as a function of age in FRAXAD mice, and (2) seizure susceptibility to pentylenetetrazol (PTZ) after mGluR5 blockade. PTZ-induced seizure severity is decreased in FRAXAD mice pre-treated with the mGluR5 antagonist MPEP. These data suggest that Aβ contributes to seizure incidence and may be an appropriate therapeutic target to lessen seizure pathology in FXS, Alzheimer’s disease (AD) and Down syndrome (DS) patients.
منابع مشابه
MPEP reduces seizure severity in Fmr-1 KO mice over expressing human Abeta.
Metabotropic glutamate receptor 5 (mGluR(5)) regulates the translation of amyloid precursor protein (APP) mRNA. Under resting conditions, mRNA is bound to and translationally repressed by the fragile X mental retardation protein (FMRP). Upon group 1 mGluR activation, FMRP dissociates from the mRNA and translation ensues. APP levels are elevated in the dendrites of primary neuronal cultures as w...
متن کاملSeizure susceptibility and mortality in mice that over-express amyloid precursor protein.
Alzheimer's disease and Fragile X syndrome both display synaptic phenotypes, and based on recent studies, likely share dendritic over expression of amyloid precursor protein (APP) and beta-amyloid (Abeta). In order to create a mouse model to specifically study the effects of APP and Abeta at synapses, we crossed Tg2576, which over-express human APP with the Swedish mutation (hAPPsw), with fmr-1...
متن کاملEarly-Onset Network Hyperexcitability in Presymptomatic Alzheimer’s Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade
Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer's disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3...
متن کاملCalpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice.
We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer's disease (AD) β-amyloidosis, the APP23 mouse, reduces β-amyloid (Aβ) pathology and Aβ levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Aβ plaque deposition, aged APP23/CAST mice show a decrease in the steady-state ...
متن کاملReduction of synaptojanin 1 accelerates Aβ clearance and attenuates cognitive deterioration in an Alzheimer mouse model.
Recent studies link synaptojanin 1 (synj1), the main phosphoinositol (4,5)-biphosphate phosphatase (PI(4,5)P2-degrading enzyme) in the brain and synapses, to Alzheimer disease. Here we report a novel mechanism by which synj1 reversely regulates cellular clearance of amyloid-β (Aβ). Genetic down-regulation of synj1 reduces both extracellular and intracellular Aβ levels in N2a cells stably expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009